

Giving Users the Steering Wheel for
Guiding Resource-Adaptive Systems

João P. Sousa, Rajesh K. Balan, Vahe Poladian,
David Garlan, Mahadev Satyanarayanan

December 2005

CMU-CS-05-198

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

This material is based upon work supported by the National Science Foundation (NSF) under
Grant CCR-0205266, and by DARPA under Grant N66001-99-2-8918. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the NSF, DARPA, or Carnegie Mellon University.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
Giving Users the Steering Wheel for Guiding Resource-Adaptive Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,School of Computer
Science,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

21

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 ii

Keywords: resource-aware systems, resource-adaptive applications, engineering adaptive sys-
tems, utility-based adaptation, adaptation policies, modeling user preferences, task-oriented
computing, user studies, ubiquitous computing.

 iii

ABSTRACT
Addressing resource variation plays an increasingly important role in engineering today’s software sys-
tems. Research in resource-adaptive applications takes an important step towards addressing this problem.
However, existing solutions stop short of addressing the fact that different user tasks often have specific
goals of quality of service, and that such goals often entail multiple aspects of quality of service.

This paper presents a framework for engineering software systems capable of adapting to resource
variations in ways that are specific to the quality goals of each user task. For that, users are empowered to
specify their task-specific preferences with respect to multiple aspects of quality of service. Such prefer-
ences are then exploited to both coordinate resource usage across the applications supporting the task, and
to dynamically control the resource adaptation polices of those applications. A user study validates that
non-expert users can use our framework to successfully control the behavior of such adaptive systems.

 iv

Contents

1. INTRODUCTION ...1

2. FRAMEWORK ...2

3. USER PREFERENCES...3

3.1 Implementation...5

3.2 Validation ...6

4. COORDINATING RESOURCE USAGE ...9

4.1 Implementation...10

4.2 Validation ...10

5. ADAPTIVE APPLICATIONS..11

5.1 Implementation...12

5.2 Validation ...12

6. RELATED WORK ..13

7. CONCLUSION ..14

8. REFERENCES..15

 1

1. INTRODUCTION
Addressing resource variation is increasingly important in engineering computer systems. The
reasons for that are twofold: first, resource availability often has a direct impact on the quality
of service (QoS). For example, the frame rate of a video streamed over a network link may vary
widely as a consequence of bandwidth fluctuations. Furthermore, unstable and limited resources
may lead to undesirable and potentially disruptive application behavior: timeouts, faults, etc.

Second, software exposure to unstable resources is getting more common. In the growing do-
mains of mobile and pervasive computing, it has been well documented that resources are fickle
(e.g. [10,15]). Even applications originally designed for the relatively stable environment of
desktops are increasingly being deployed on laptops equipped with wireless technology, and
therefore faced with fluctuating bandwidth and limited battery charge.

One step towards addressing resource variation is building adaptive applications. Such applica-
tions monitor resource availability and adapt their computing tactics in order to maximize the
QoS. Over the past few years, the community has developed a good understanding of resource-
adaptation mechanisms (e.g. [8,9,22]).

Commonly, existing adaptive applications either enforce predetermined policies, or offer limited
mechanisms to control those policies. In some cases, the adaptation mechanisms focus strictly
on network conditions, enforcing policies that are established by system designers before the
system is deployed. In other cases, users are offered limited control over the policies, typically
focusing on a single aspect of QoS, such as battery duration.

Unfortunately, those limitations prevent adaptive systems from addressing two important goals.
First, the optimal resource allocation among the applications being used should be determined
by task-specific goals. For example, for a task such as preparing a presentation, the user may
edit slides, browse the web for papers on the topic, and ask a colleague to email related material.
Now, if the web browser is competing with email for limited bandwidth over a wireless link,
how should bandwidth be allocated among the two? The answer depends on the user prefer-
ences for QoS aspects such as the response time of each application.

Second, the optimal adaptation policies should be determined by task-specific goals, and such
goals often entail multiple aspects of QoS. For example, in the presence of limited bandwidth,
should a web browser skip loading pictures in order to provide faster load times? For browsing
citations, a user may prefer dropping images to improve load times; but for browsing online
driving directions, the user may be willing to wait longer for the full page content.

This paper presents a framework for engineering resource-adaptive systems that (a) coordinate
resource usage among several applications, and (b) enforce adaptation policies that take into
account multiple aspects of QoS, and that may change dynamically according to the user prefer-
ences for each task.

To develop such a framework, important questions need to be answered. How to represent user
preferences in a way that can be used to guide resource-adaptation policies? How to elicit such
preferences? How to allocate resources among applications, and how to coordinate their adapta-
tion policies? What APIs must applications expose to be amenable to such coordination?

To answer these questions, this work integrates results from three areas of research: eliciting
user preferences, computing resource allocation dynamically based on user preferences, and
enforcing resource usage and adaptation policies at the application level.

The contributions of this paper are: (1) a way to represent task-specific user preferences with
respect to multiple aspects of QoS; (2) interfaces to elicit such preferences; and (3) an architec-
ture for building resource-adaptive systems that coordinate resource usage across different ap-
plications, and that enable applications to dynamically adjust their policies based on user pref-

 2

erences. This architecture is part of Project Aura [13], a wider project in ubiquitous computing.
Another paper submission addresses a complementary but separate result: exploiting models of
user tasks to support user mobility by automatically suspending and resuming tasks at different
locations [26].

In the remainder of the paper, Section 2 discusses the proposed framework for engineering re-
source-adaptive systems, and specifically it describes the relevant slice of the Aura architecture.
Sections 3, 4 and 5 elaborate respectively on the representation of user preferences, and on the
aspects of the architecture related to coordinating resource usage and to application-level adap-
tation. Each of these sections includes a validation of the corresponding piece of research. Sec-
tion 6 discusses related research. Section 7 puts this work into perspective, summarizing the
main software engineering benefits it delivers, and pointing at future work.

2. FRAMEWORK
To address the fact that users often have specific QoS goals for different tasks, the framework
for adaptation presented herein empowers users to specify their task-specific preferences with
respect to multiple aspects of QoS. For that, however, we need to devise a representation of
user preferences that is both practical from the point of view of elicitation from users, and pow-
erful from the point of view of controlling adaptation.

Furthermore, we need to design an architecture that: (a) captures task-specific user preferences
with respect to QoS, (b) coordinates the resource usage across the several applications support-
ing a user’s task, and (c) enables applications to dynamically adjust their adaptation policies
based on user preferences.

The architecture that supports this framework for adaptation is a slice of a broader architecture
for ubiquitous computing developed in Project Aura (see Sousa’05 for more information [25]).

Figure 1 shows an informal view of the relevant components of Aura and their interactions:
Prism captures user preferences; the Environment Manager (EM) coordinates resource usage
across applications; and the connectors (arrows in black in the figure) disseminate user prefer-
ences and resource constraints as needed. Chroma is a software layer that facilitates the devel-
opment of adaptive applications by providing common functionality to monitor and adapt to
resource variation.

Aura supports a high-level notion of user tasks, such as preparing presentations or writing pa-
pers. Such tasks often involve several services. For instance, for preparing a presentation, a
user may edit slides, refer to a couple of papers on the topic, check previous related presenta-
tions, and browse the web for new developments.

Whenever a user signals that he whishes to start or resume working on a task, Aura automati-
cally identifies which applications available in the environment1 are best to support all the re-
quired services, and activates them with the optimal resource allocation.

To achieve that, Prism communicates a task model to the EM. This model enumerates the re-
quired services and includes the user preferences for the task represented in the form of utility
functions (more on this in Section 3).

Based on that model, the EM determines the best achievable configuration: a selection of appli-
cations to supply the services, together with the optimal allocation of resources among those
applications (more on this in Section 4).

1 We call computing environment to the set of devices, software components and resources accessible to the user at

some point.

 3

Once Prism and the EM commit to a configuration, the EM communicates with the applications
to activate the services and to establish the resource allocation. For example, if web browsing
and watching a video stream are both part of the task, and competing for bandwidth, the utility
for the user may be maximized when video streaming consistently uses 80% of the bandwidth
and web browsing does not attempt to go beyond the remaining 20%.

Following the activation of services, Prism disseminates the user preferences for each service
among the corresponding applications. Prism also disseminates user preferences while a task is
being carried out: that occurs every time the user makes changes and hits save in the elicitation
interfaces. In this case, the EM is also included in the broadcast, since the new preferences may
imply a different allocation of resources.

Each adaptive application takes user preferences in the form discussed in Section 3 and trans-
lates them into concrete resource-adaptation policies. Specifically, each application chooses a
computation tactic that optimizes the utility function passed by Prism, given the resource con-
straints established by the EM, and the available resources at each moment (more on this in Sec-
tion 5).

The logical separation between Prism and the EM corresponds to the separation of what con-
cerns users (service needs and QoS preferences for their tasks), and what concerns the environ-
ment: the availability of resources and their optimal allocation, given a set of requirements ex-
pressed as a task model.

Chroma is also concerned with the environment, but while the EM focuses in overall optimiza-
tion, Chroma focuses on resource usage and adaptation within each application. Chroma pro-
vides mechanisms to (a) monitor available resources, (b) profile the resource demands of alter-
native computation tactics, and (c) decide dynamically which tactics to use depending on the
available resources. Such decisions are taken at the granularity of small units of work, such as
recognizing a speech utterance, or rendering one virtual-reality frame.

The connectors between Prism and the EM, between Prism and the applications, and between
the EM and the applications, support the asynchronous exchange of XML messages over TCP.
The asynchronicity of message exchange supports peer-to-peer protocols where every compo-
nent may initiate communication, as needed, rather than standing on a purely reactive mode.
The fact that messages are encoded in XML, as opposed to binary formats, facilitates imple-
menting each component in the architecture using the language most convenient for the specific
job.

3. USER PREFERENCES
The key requirements for Prism within the architecture outlined in Section 2 are: (a) to elicit
preferences from non-expert users; and (b) to disseminate such preferences in a form that can be
exploited to coordinate resource allocation and adaptation policies.

The models of user preferences in this context must take into account that: (1) users care about
multiple aspects (dimensions) of QoS; (2) different services may be characterized by different

Operating System
Chroma

Environment
Manager

UI
Prism

adaptive
Application

adaptive
Application

Figure 1. Informal view of the components and interactions.

 4

QoS dimensions; and (3) user preferences are task-specific. For example, for web browsing,
users may care about load times and whether the full content is loaded (e.g., pictures); for auto-
matic translation, users may care about the response time and accuracy of translation; for watch-
ing a movie, users may care about the frame update rate and image quality. From a user’s point
of view, the availability of resources, such as bandwidth, is important only to the extent that it
impacts the observable QoS dimensions that users really care about.

A simple approach to modeling user preferences is to indicate which QoS dimension a user val-
ues the most. For example, for an automatic translation service, a user might indicate that re-
sponse time is preferred over accuracy. The system could then adopt a policy that optimizes
response time. However, important questions cannot be answered with this approach: for in-
stance, how short of a response time will satiate the user? And even if accuracy is less impor-
tant, what if it degrades so much that the translations become unusable?

At the other end of the spectrum, preferences may be expressed as an arbitrary function between
the multivariate quality space and a utility space representing user happiness. For instance, the
user might indicate that he would be happy with medium translation accuracy, as long as latency
remains under 1 second, and that he will be happy to wait 5 seconds for highly accurate transla-
tions. Although fully expressive, designing mechanisms to elicit this form of preferences from
non-expert users is a hard problem, and even more so if more than two QoS dimensions are in-
volved.

The approach we adopt sits between these two extremes. First, user preferences are expressed as
independent utility functions for each QoS dimension. Such functions map the possible quality
levels in the dimension to a normalized utility space U

�

 [0,1], where the user is happy with
utility values close to 1, and unhappy with utility values close to zero. The functions for each
dimension are then combined by multiplication, which corresponds to an and semantics: a user
will be happy with the overall result only if he is happy with the quality along each and every
dimension. Whenever a user task involves more than one service, the overall utility incorpo-
rates the QoS dimensions for all the services.

Second, for each continuous QoS dimension the user indicates two values: the threshold of sa-
tiation, and the threshold of starvation. For instance, the user might indicate that he would be
happy with response times anywhere under 1 second, but would not accept response times over
10 seconds. Currently we use sigmoid functions to smoothly interpolate between these two
zones: the threshold values corresponding to the knees of the curve (see Figure 2b. Preferences
for discrete QoS dimensions, for instance accuracy encoded with values high, medium and low,
are simply represented using a discrete mapping (table) to the utility space.

For evaluating an approach to modeling preferences, three criteria need to be considered: the
expressiveness of the models, the ease of eliciting them, and the ease of exploiting them for ad-
aptation.

Although mathematically less expressive than an arbitrary multivariate function, the user study
described in Section 3.2, and our experience with multiple examples, confirm that our approach
is both expressive enough for practical situations and accessible to non-expert users. Addition-
ally, the algorithms for finding the optimal system configuration can be made simpler and more
efficient by having a separate utility function for each QoS dimension as opposed to supporting
arbitrary multivariate functions [23].

After deciding on what to model, the next question is how to represent those models. Such rep-
resentations need to be passed to the adaptive applications at runtime. Specifically, every time
the user changes his preferences, for instance due to starting a new task, the corresponding util-
ity function needs to be passed to the application (or applications) serving the user, so that it can
enforce the appropriate adaptation policies.

 5

The representation of utility functions often used in isolated adaptive applications is a function,
in the programming languages sense, that returns the utility value, i.e. the user happiness, given
specific quality levels as parameters. However, even with dynamic load library (DLL) capabili-
ties, such solution becomes cumbersome when different applications are written in different
programming languages.

XML provides a more convenient representation of user preferences. Since XML is text-based,
as opposed to binary, it can easily be passed among components at runtime, even when those
components are distributed across the network (using protocols such as TCP or HTTP), even
when those components reside in platforms with different binary encodings (e.g., Little Endian
vs. Big Endian byte orderings [7]), and even when applications are written in different lan-
guages, since virtually all modern languages can access libraries for parsing and shipping XML.

3.1 Implementation

An important principle for interactive systems is that of offering incremental benefit for incre-
mental effort (sometimes called gentle slope systems [18]). Users should able to reap significant
benefits from adaptation even with little effort put into describing their preferences, and the
more effort users are willing to put, the better job the system can do in following their prefer-
ences.

Prism offers predefined templates associated with each service type as a quick way for defining
user preferences. At least one template, the default, is provided, and depending on the service
type, more templates may be available. For example, for web browsing, the default template
specifies that pictures should be loaded but is lenient on the response times. An additional fast
template is defined, specifying stricter constraints for the response time but being tolerant of not
loading pictures.

Whenever the preferences specified by the default template fail to capture the user’s intent for
the service within a particular task, the user may select another template for the service. If the
user is not satisfied by the available templates, he may customize the QoS preferences for the
service.

Figure 2 illustrates the user interfaces Prism provides for eliciting QoS preferences. The exam-
ple shown is for the service of translating natural language, which has two QoS dimensions: la-
tency (response time) and accuracy.2 The latency of recognizing a sentence has a numeric do-
main and is expressed in seconds. The accuracy of translation reflects how well the meaning is
preserved.

2 Prism also allows users to specify which applications are preferred to supply each service (leftmost tabs in Figure 2).

This is part of a broader framework for adaptation [25].

(a) (b) (c)

Figure 2. QoS preferences for the language translation service.

 6

Two predefined templates are available: the fast template has stricter constraints on latency than
the accurate template, but tolerates a lower accuracy of translation. When a user starts a lan-
guage translation service, the fast template is activated by default. Users may switch between
these two templates in the selection box shown at the bottom-right in Figure 2 (a).

The utility function for latency is a sigmoid function where the thresholds of satiation and star-
vation are represented by the green (lighter) and red (darker) lines in Figure 2 (b), respectively.
The user happiness corresponding to each value of latency is indicated by the scale at the top,
ranging from a happy face () for values beyond the satiation threshold, all the way down to a
cross (), representing rejection, for values beyond the starvation threshold. The utility func-
tion for accuracy, represented in Figure 2 (c), is a table indicating the user happiness for each
value of accuracy.

In addition to showing the precise meaning of preference templates, these interfaces support
customizing the user preferences for a specific task. After selecting the custom check-box to the
left of the template selection box, users may depart from a template and set their preferences
directly. The thresholds of sigmoid curves may be adjusted by dragging the green and red han-
dles, respectively. The entries in tables may be changed by selecting the utility for each value in
the QoS dimension.

Figure 3 shows the XML representation of the preferences captured in Figure 2. Prism creates
user interfaces like the one in Figure 2 dynamically, based on the specific QoS dimensions pre-
sent in the XML representation. In turn, the XML representation is updated by manipulating the
widgets in the user interface. Whenever the user commits to (saves) a change in his preferences,
Prism transmits an XML structure like the one in Figure 3 to the application supplying the cor-
responding service.

3.2 Validation

Validating the proposed solution entails demonstrating (a) that non-expert users can interact
successfully with Prism to satisfy their QoS goals; and (b) that Prism can coordinate the policies
of adaptive applications using such a representation of user preferences. To better control the
conditions of the evaluation, we performed a separate experiment for each of these premises
employing a Wizard of Oz approach.3

First, a user study investigated whether non-expert users can use Prism to control the adaptation
policies enforced by an interactive application. The experiment involved using an automatic
natural language translator running on a mobile device. The quality of translation would vary,
since the translator would run sophisticated algorithms on a remote server, in the presence of
fluctuating bandwidth and available capacity in the server. To prevent limitations in the capa-

3 In a Wizard of Oz experiment, a simulation substitutes for part of the system, in this case to facilitate exercising the

other parts in specific ways that would be otherwise hard to achieve.

<utility combine="product">
 <QoSdimension name="latency" type="int">
 <function type="sigmoid" weight="1">
 <thresholds good="3" bad="20" unit="second"/>
 </function>
 </QoSdimension>
 <QoSdimension name="accuracy" type="enum">
 <function type="table" weight="1">
 <entry x="high" f_x="1"/>
 <entry x="medium" f_x="1"/>
 <entry x="low" f_x="0.3"/>
 </function>
 </QoSdimension>
</utility>

Figure 3. Internal representation of the preferences in Figure 2

 7

bilities of the actual translation application (limited dictionaries, etc.) from affecting the partici-
pants’ perception of the accuracy of translation, we replaced a human for the remote translation
server. The role of this person, part of the research team, was not revealed to the participants
during the study.

Second, system testing investigated the effectiveness of controlling adaptation policies using a
wide range of realistic user preferences. Since covering a large number of preferences under
different resource conditions would be tedious and cumbersome to carry out with real users, we
substituted a batch simulator for the user, which bypassed the user interfaces of both Prism
(Figure 2) and the automatic translator.

The remainder of this section elaborates on the user study and the corresponding results,
whereas the system testing is discussed in Section 5.2.

The user study focused on answering the following questions: first, can users recognize the ap-
plicability and use preference templates to achieve a goal? Second, can users think of and ma-
nipulate preferences in terms of thresholds? Third, do they find it easy? And fourth, can users
interpret the effects of specifying different preferences in the application’s adaptive behavior?

The participants in the user study were drawn from a population with homogeneous education
level and age group, but diverse technical background. Ten students in the age group 18-29
were drawn among the respondents to a posting, 5 of which from computing-related fields
(computer science, electrical and computer engineering, logic) and the remaining 5 from other
fields (business, physics, literature). Incidentally, 6 were male and 4 female.

Participants individually performed an experiment that lasted 30 minutes, after being given a 20
minute introduction that included a description of the scenario, an introduction to the think
aloud protocol [27], and hands-on practice with the adaptive translator. During the experiment,
all of the participant’s actions on the screen, in addition to their voice were recorded using video
capturing software [28]. After the experiment, the participants completed a short questionnaire.

The scenario for the experiment revolved around a conversation with a foreign language speaker
(Spanish in this case) aided by translation software. To prevent serious misunderstandings in a
real situation, users of the translation software would be able to check the accuracy of transla-
tion by having the Spanish translation translated back to English and spoken (using speech syn-
thesis) on the user’s earphones. Users would press a go-ahead button to synthesize the Spanish
translation only if they were happy with the accuracy of translation.

During the experiment, participants were asked to input sentences of their own making, listen to
the output of the double translation, and rate the accuracy. The training included calibrating the
participants' rating of accuracy using the following scale: high, if the meaning is fully preserved;
medium, if the meaning is roughly preserved; and low, if the meaning is seriously distorted.

Participants were asked to pursue different QoS goals during each part of a three-part experi-
ment. Within each part, we simulated resource variation and asked the participants to evaluate
the changes both in latency and accuracy of translation. During the first two parts, the QoS
goals could be satisfied by preference templates. During the third part, the specific goal could
only be achieved by customized preferences. The participants were not directed as to whether
or not to use templates in any case.

Whenever the QoS goals could be met by a template, the participants did use templates in 17 out
of 20 cases. In the remaining 3 instances, the participants were still able to achieve the goals
using customized preferences. When asked about the clarity and usefulness of templates, 8 par-
ticipants were fully favorable, while 2 didn’ t recognize a benefit in having templates (Figure
4a).

 8

All 10 participants were able to manipulate the thresholds in customized preferences for achiev-
ing the required QoS goals. Specifically, the experiment was set in such a way that the thresh-
olds in one dimension needed to be made stricter, while relaxing the other dimension, under
penalty of the goal not being achievable.

When asked about the clarity of using thresholds to specify preferences, 8 participants were
fully favorable, while 2 thought some alternative strategy could be preferable (Figure 4b). One
of these participants suggested that an X-Y representation of the actual tradeoff of accuracy ver-
sus latency would make it clear what is the impact on one caused by that pushing the other.
However, there are two reasons why such representation may not be such a good idea. First,
such representation exposes users to details they should not have to worry about: the specific
tradeoff between dimensions is a function of the available resources, which changes from one
moment to the next. In contrast, the current representation focuses exclusively on the thresholds
of user happiness along each dimension, and as such, is independent of resource fluctuations.
Second, for all practical purposes an X-Y plot is limited to tradeoffs between two variables: it
would be very hard to manage graphical representations with more than two dimensions.

When asked about how easy it was to use the interfaces in Figure 2 to customize preferences, 5
participants were fully favorable while the other 5 thought the interfaces could be improved.
Nevertheless, the time it took to customize preferences was mostly under 1 minute, the average
being 42 seconds. To provide a comparison with these results, one of the authors measured the
time it took to customize a power-saving profile on an IBM ThinkPad T30 computer using the
IBM Battery Maximizer program. Creating a new profile by specifying a subset of all possible
settings on a single window took 25 seconds. Modifying an existing profile by using a wizard
that allows setting more options took 45 seconds. We should note that this particular author had
used the program several times before. Thus, we conclude that the time it took the study par-
ticipants to customize preferences is in line with performing similar tasks on a mobile computer.

The participants were able to interpret the effects of specifying different preferences in the ap-
plication’s adaptive behavior. To verify this, we tested the hypothesis that when resources
change participants perceive a change in the QoS, with a greater impact along the QoS dimen-
sion for which the preferences are laxer. For that, after each translation the participants evalu-
ated which QoS dimension changed the most relative to the previous translation: a noticeable
change in accuracy with similar latencies, a noticeable change in latency with similar accura-
cies, no noticeable changes, etc. Participants then related those changes with the strictness or
laxness of the preferences along each QoS dimension. The participants were not informed of
when or in which direction resources would change.

Figure 5 shows the results of correlating which dimension had stricter preferences with which
dimension was perceived to have changed the most. The correlation coefficient is negative,
meaning that whenever user preferences were stricter along one dimension, the participants per-
ceived a greater fluctuation on the other dimension (caused by underlying resource fluctua-
tions).

0

2

4

6

8

10

1 2 3 4 5

0

2

4

6

8

10

1 2 3 4 5

(a) Templates (b) Thresholds

Figure 4. L iker t scale evaluation of preferences’ specification
(5-fully favorable, to 1-unfavorable).

 9

This user study demonstrates that non-expert users can both define their preferences using
Prism, and interpret the results of such definitions in the system’s QoS. A control loop is there-
fore closed, enabling users to pursue concrete QoS goals. The practicality of the control loop is
confirmed by the fact that all participants were always able to achieve concrete QoS goals,
within reasonable times.

4. COORDINATING RESOURCE USAGE
The key requirements for the Environment Manager (EM) within the architecture outlined in
Section 2 are: (a) select the set of applications that best serves the user’s needs and preferences
for a task; (b) coordinate the resource usage of that set of applications; and (c) perform these
two roles without introducing perceptible delays for the user, and without drawing significantly
from the resources available to the applications.

Furthermore, these requirements need to be satisfied on an ongoing basis, adjusting the alloca-
tion of resources or even the set of applications in response to changes on either the user’s task,
or on the environment (e.g., faults or significant changes in resources).

The EM takes three kinds of inputs:

Task models. A task model enumerates the service needs for the user’s task, and the user pref-
erences for each QoS dimension associated with those services. Such preferences are repre-
sented as a mathematical function, selected from a vocabulary of functions (sigmoids, tables…)
shared by Prism, the EM and the adaptive applications. These functions are combined by multi-
plication into an overall utility function for the task [25].

Capability profiles. The capability profile of an application relates the possible quality levels
that the application can provide with the corresponding resource demands. Unlike more fine-
grained information maintained by adaptive applications, this is a summary view containing av-
erages over a large number of historical samples [23].

Resource estimates. Resource estimates take a snapshot of the overall resources available in
the environment. Similarly to capability profiles, this information is kept at a coarse level (sev-
eral seconds), smoothing-out momentary drops and surges in resources. In contrast, adaptive
applications focus precisely on those drops and surges to accomplish fine-grain adaptation [3].

 Correlation Coefficient t-value Significant at 95%
 -0.6 -4.27 Yes

How to interpret a cor relation: the correlation coefficient denotes the slope of the line that
best fits the data. A positive coefficient means that an increase in the x-axis corresponds to an
increase in the y-axis. A negative coefficient means that an increase in the x-axis corresponds
to a decrease in the y-axis. If the coefficient is zero, the data cannot be approximated by a
straight line (there is no correlation between the x values and the y values).

Student's t-test of significance: indicates the likelihood that the correlation in the data sample
corresponds to a real correlation in the general population. A commonly accepted threshold is
95% confidence. Statistics manuals contain tables of t-statistics for each size of the data sam-
ple. The t-test consists of comparing the t-value calculated for the correlation with the lookup t-
statistic. If the absolute t-value is larger than the t-statistic, then the correlation is significant
with 95% certainty.

Sample: 40 data points relating two variables (38 degrees of freedom), for which the t-statistic
is 2.024 for a 95% confidence.

Figure 5. Regression per formed on exper iment data.

 10

Given the three inputs above, the EM computes an optimal configuration: (1) a suite of applica-
tions, and (2) a resource allocation for each selected application. The resulting configuration is
optimal in the sense that it maximizes the overall utility function for the task. For the maximiza-
tion, the EM employs a search algorithm that efficiently searches the complete configuration
space of available applications and their quality levels, under the constraints of the available
resources. Having found the solution, the EM invokes the selected applications to activate the
services, and advises each application of its resource allocation.

To compute the optimal configuration, there are two alternative strategies: reactive, and antici-
patory. The anticipatory strategy requires the same kinds of inputs, but those inputs are en-
riched with a temporal perspective.

In the reactive strategy, a snapshot of all the inputs is fed to an optimizer, which determines the
optimal configuration. Then, periodically, as either the user’s preferences or environment
change, the optimizer re-computes the optimal configuration, possibly changing the suite of ap-
plications4 or the allocation of resources among them.

In the anticipatory strategy of coordination, the optimizer takes not only the current snapshot of
the inputs, but also their expected paths over time. Hence the decision is not “optimal now” , but
“optimal over time,” given the expected changes over a future window. This strategy is object
of ongoing research.

4.1 Implementation
The current implementation of the EM adopts a reactive strategy of coordination. The optimiza-
tion algorithm takes advantage of two components of utility: one that rewards a particular
choice of applications (based on user familiarity with those applications), and another that re-
wards the achievable QoS.

The outline of this algorithm is as follows (details in [23]):

− Query for the required services among all available applications.

− Generate all possible suites of applications that jointly satisfy the service needs of the task.

− For each suite, compute the utility component that reflects how much the user values the par-
ticular choice of applications (prior to considering the QoS they can deliver). Then sort the
suites according to the resulting score.

− Starting from the highest scoring suite, search the joint quality space of the suite, under the
current resource constraints, to find the point that delivers the maximum utility. This search
problem is equivalent to a multiple-choice, multiple-dimension knapsack packing problem,
which searches for a set of highest value items given multiple resource constraints.

− Break from the search as soon as none of the remainder candidate suites can beat the current
maximum utility, no matter how good of a QoS they can provide. Pick the suite with the high-
est utility found so far, and allocate the resources corresponding to the point in the quality
space that maximizes utility.

4.2 Validation
The requirements of selecting the set of applications that best serve the user’s needs, and of co-
ordinating resource usage among those applications, are addressed by the optimization algo-
rithm outlined above. This algorithm is run in response to changes in user needs, and periodi-
cally to address trends in resource availability. This ensures that the optimality of configuration
is maintained over time.

4 Oscillating between closely rated configurations is prevented by introducing hysteresis based on change penalties.

 11

To validate that running this algorithm does not introduce perceptible delays for the user, and
does not draw significantly from the resources available to the applications, we performed a sys-
tem’s evaluation. The experiments were carried out on an IBM ThinkPad 30 laptop running
Windows XP Professional, with 512 MB of RAM, 1.6 GHz CPU, and WaveLAN 802.11b card.
Prism and the EM each run on a Hot Spot JRE from Sun Microsystems, version 1.4.0_03.

The average latency finding the optimal configuration is 200 ms (standard deviation 50 ms) for
user tasks requiring from 1 to 4 services, when 4 to 24 alternative suites of application are avail-
able.5 We also measured the overall overhead of activating all the services in a task, which in-
cludes the latency of the communication protocols in Figure 1 (but not the latency of starting the
applications themselves). This latency is mostly constant, rather than growing proportionally to
the number of services, and is on average 700 ms (standard deviation 200 ms).

The memory footprint of the EM ranges linearly from 7 MB to 15 MB when it holds the de-
scriptions of 20 up to 400 services in the environment. By comparison, a “hello world” Java
application under the used Java Runtime Environment (JRE) has a memory footprint of 4.5 MB,
and a Java/Swing application that shows a “hello world” dialog box has a memory footprint of
12 MB. When reevaluating the resource allocation every 5s, the EM uses on average 3% of
CPU cycles.

In conclusion, the delay introduced by the infrastructure in Figure 1 is mostly imperceptible for
the user when coupled with starting up applications, and the EM’s footprint is comparable to the
smallest applications.

5. ADAPTIVE APPLICATIONS
The key requirements for adaptive applications within the architecture outlined in Section 2 are:
(a) to comply with the resource allocation determined by the EM, and (b) to optimize the utility
functions passed by Prism, in the face of resource variations.

To satisfy these two requirements, applications use mechanisms to (a) monitor available re-
sources, (b) profile the resource demands of alternative computation tactics, and (c) decide dy-
namically which tactics to use depending on the available resources.

To avoid the costs of replicating such functionality in every application, Aura provides Chroma,
a common layer for resource adaptation [3]. To further assist adaptive applications running on
small platforms, Chroma supports partitioning the application’s logic into modules that can re-
side on remote servers.

For that, Chroma exploits the idea of tactics: descriptions of valid sequences of module invoca-
tions that accomplish some unit of work. At runtime, Chroma determines the appropriate tactic
to use and where to run each module: either locally or at a specific remote server. Chroma se-
lects the tactic that a) maximizes the utility function representing the current user preferences,
and (b) does not exceed the resource constraints for the application. For executing a tactic,
Chroma handles all necessary remote calls, argument passing, and intermediate buffer manage-
ment. Applications just have to provide Chroma with the arguments for the tactic and Chroma
will return the computed output.

Chroma takes four kinds of inputs:

Tactics: describe the alternative computation tactics for each application, including tactics that
involve remote execution.

Utility functions: represent user preferences for each QoS aspect.

5 This represents an improvement of about a factor of two over the numbers reported in [23].

 12

Resource allocation: constrains the resource usage by each application, even if more resources
are available. These bounds are in place to optimize overall QoS goals.

Resource usage: monitors the resources used by each tactic.

5.1 Implementation
The current implementation of Chroma is informally depicted in Figure 6. The main compo-
nents of Chroma are highlighted: resource monitors, a resource demand predictor, and the
solver, which determines the optimal application runtime settings.

Currently supported resource monitors include the available bandwidth, battery charge, CPU
and memory, both on the local machine and on any remote servers. Chroma uses the history-
based resource demand predictors developed by Narayanan et al [19]. The solver performs an
exhaustive evaluation of all possible tactics and picks the one that is forecasted to make the best
use of the available resources with respect to the utility functions.

To integrate an application with Chroma, a (human) system integrator needs to do two things:
describe the application’s tactics, and insert four Chroma API calls into the application’s code.
Two of these calls register and deregister the application with Chroma. The file containing the
description of tactics is read upon registration.

The two other calls to Chroma are invoked when performing a unit of work, such as translating
an utterance, or playing a video segment. First, the application calls Chroma to decide which
tactic should be run and the corresponding runtime settings. Once informed of this decision, the
application calls Chroma to execute the selected tactic (possibly involving remote execution)
with the specific parameters (e.g., the utterance to be translated).

The process of integrating an application with Chroma is described in detail in Balan’05 [3].

5.2 Validation
The validation presented in this section corresponds to the system testing part of the experiment
described in Section 3.2. A more thorough validation of Chroma’s ability to perform adaptation
in the presence of limited resources is presented in Balan’03 [2].

This test is based on the scenario where a PDA is used to carry out natural language translation.
When resources are poor, no remote servers can be reached, and the translation is carried out
exclusively using the PDA’s capabilities. When resources are rich, powerful remote servers are
available to do part of the work. We used a 233Mhz Pentium laptop with 64MB of RAM to
simulate the PDA and 1GHz Pentium 3 laptops with 256MB of RAM as the remote servers.

The test used 3 randomly selected sentences, of between 10-12 words in length. Each sentence
was (doubly) translated five times, from English to Spanish and then back into English using
Pangloss-Lite, a language translation application [12].

Solver EM

Prism

Resource Demand
Predictor

adaptive
Application

Resource Monitors

utility
functions

resource
allocation

resource
availability

resource
demand

tactics

resource
usage

runtime
settings

Figure 6. Components and information flow in Chroma.

 13

The utility functions provided to Chroma correspond to the fast and accurate templates intro-
duced in Section 3.1. The fast template accepts medium accuracy within 1s, and the accurate
template is willing to wait 5s for highly accurate translations.6 Each sentence was translated
under rich and poor resources, for each of the two preference templates (four test situations).

Table 1 shows the relative utility of Chroma’s decisions in each of the four test situations. The
relative utility is calculated as the utility of the QoS delivered by Chroma’s decision relative to
the best possible utility, among all the alternative tactics, given the current resource conditions.
To illustrate this optimality, the two rightmost columns show the utility of the adjacent deci-
sions in terms of resource usage. That is, the relative utility of the decisions that would take the
nearest lower resources, and the nearest higher resources, respectively. There are two corner
cases, shown with N/A, where Chroma’s decision corresponds to the lowest possible resource
usage, and to the highest possible usage.

In summary, Chroma always picks the best possible tactic, under different resource conditions,
and different user preferences.

6. RELATED WORK
To the best of our knowledge, our work is the first that integrates task-specific user preferences
into a complete resource adaptation solution. The presented framework ties together three ma-
jor pieces: Prism to elicit task-specific user preferences; the Environment Manager to compute
the optimal resource allocation among applications based user preferences; and Chroma to pro-
vide OS-level support to resource adaptation.

Prism uses theories and techniques from microeconomics to elicit utility with respect to multiple
attributes. Recent results in software engineering have leveraged similar ideas. For example, in
the Security Attribute Evaluation Method (SAEM), the aggregate threat index and the losses
from successful attacks are computed using similar utility functions [5]. The Cost Benefit
Analysis Method (CBAM) uses a multidimensional utility function with respect to quality at-
tributes in evaluating multiple architectural alternatives for a software project [17]. Our work is
different from SAEM and CBAM in that it is geared towards pervasive and mobile computing.

User studies done in mid-to-late 1990s have demonstrated that certain dimensions of quality of
service (e.g., absence of jitter) are much more important to the user than improvements in frame
rate [20]. Our system recognizes the importance of these results and ensures, by explicit re-
source arbitration, that adequate resources are available for applications to provide service while
maximizing the task-level utility.

From analytical point of view, closest to the role of the Environment Manager are Q-RAM [16],
Knapsack algorithms, and winner determination in combinatorial auctions. Our work goes a
step further and also considers the problem of selecting applications and reducing unwanted dis-
ruption to the user. Work presented in [21] performs utility-based resource allocation based on
congestion prices and shares the same objective, but does not utilize a centralized arbiter of re-

6 The latency thresholds for the system testing are much smaller than the ones used in the user study in Section 3.2, in

which the translation was performed by a team member.

Table 1. Relative utility of Chroma’s decisions

preferences / resources
Chroma's
decision

Lower
resources

Higher
resources

fast / poor 1.0 N/A 0.45

accurate / poor 1.0 0.37 0.13

fast / rich 1.0 0.51 0.83

accurate / rich 1.0 0.50 N/A

 14

sources. Relative to our solution, [21] has two shortcomings: (1) reaching an equilibrium state
might take a long time, and (2) even after the equilibrium is reached, there is no guarantee that it
is globally optimal.

From an analytical point of view, closest to the role of the Environment Manager are Q-RAM
[16], Knapsack algorithms, and winner determination in combinatorial auctions. Our work goes
a step further and also considers the problem of selecting applications and reducing unwanted
disruption to the user. Neugebauer et al performed utility-based resource allocation based on
congestion prices [16]. They shared the same objective, but did not utilize a centralized arbiter
of resources. Relative to our solution, their work has two shortcomings: (1) reaching an equilib-
rium state might take a long time, and (2) even after the equilibrium is reached, there is no guar-
antee that it is globally optimal.

Dynamic resolution of resource allocation policy conflicts involving multiple mobile users is
addressed in [6] using sealed bid auctions. While this work shares utility-theoretic concepts
with our configuration mechanisms, the problem we solve is different. Our work has no game-
theoretic aspects and addresses resource contention by multiple applications working for the
same user.

Chroma uses adaptation techniques first proposed in Odyssey [22], and it incorporates the his-
tory-based resource prediction techniques developed by Narayanan et al [19]. Even though, the
use of remote execution to overcome resource constraints has been previously explored [9,24],
Chroma’s use of tactics to determine optimal application partitioning is unique [3].

Finally, some previous work, such as the GRACE Operating System [29], has claimed to present
a complete user-centric adaptation solution. Our framework goes a step further by addressing
the elicitation of task preferences. Furthermore, the notion of task-level utility is much more
fine-grained in our work.

7. CONCLUSION
Today’s default architecture for adaptive systems places the responsibility of eliciting user pref-
erences and managing resource usage on each application. Unfortunately this approach makes it
very hard to grant users adequate control over the QoS they get in the presence of limited or
fluctuating resources.

There are two main reasons for that shortcoming: first, it is costly to replicate mechanisms for
eliciting user preferences and for resource adaptation across applications. Therefore, many ap-
plications implement limited solutions for adaptation, or none at all.

Second, it is hard to coordinate resource usage among the applications supporting the user’s
task. Each individual application has to determine its own optimal resource allocation so that
the user’s overall QoS goals for the task are satisfied. However determining that optimal point
requires global knowledge about how the resource demand of every relevant application corre-
lates with the desired QoS levels. Unfortunately, it is hard for an individual application to even
know which other applications are involved in supporting the user’s task. Consequently, today
individual applications trample on each other in their quest for resources, oblivious of the user’s
overall QoS goals.

This paper presents an architecture that addresses these difficulties by factoring common adap-
tation concerns into a common infrastructure which then coordinates resource usage and adapta-
tion polices. This work integrates results from three areas of research: (1) eliciting user prefer-
ences, (2) computing resource allocation dynamically based on user preferences, and (3) enforc-
ing resource usage and adaptation policies at the application level.

The architecture presented herein delivers a number of benefits for engineering adaptive appli-
cations.

 15

First, it introduces a way to represent user preferences that is both practical from the point of
view of elicitation, and powerful from the point of view of guiding adaptive applications. As
documented in Section 3.2, non-expert users can successfully interact with Aura to specify their
preferences and pursue concrete QoS goals. As documented in Sections 4.2 and 5.2, Aura can
exploit that representation to dynamically coordinate the resource usage and the adaptation poli-
cies of individual applications.

Second, it introduces a component whose primary responsibility is to elicit user preferences and
track changes in those preferences. This both reduces the cost of implementing similar mecha-
nisms in every application, and allows for the creation of preferences that are user-specific, and
furthermore, task-specific, rather than application-specific. Today, users increasingly carry out
their tasks across different devices, using different applications, and the same application may
be used to carry out tasks with very distinct QoS goals. In this reality, it becomes easier to de-
cide which user preferences to apply at each moment from within a component that takes the
perspective of users and user tasks, than from within an individual application.

Third, it introduces a component whose primary responsibility is to coordinate resource usage
among all the applications supporting the user’s task. The system-wide perspective held by this
component makes it feasible to find the resource allocation that optimizes overall QoS goals,
rather than local ones. By providing this component with the user preferences for each task, the
resource allocation is made to match the task’s specific QoS goals.

Forth, it introduces a component that facilitates extending applications for adaptation. This
component saves development costs by providing common mechanisms for (a) monitoring
available resources, (b) profiling the resource demands of alternative computation tactics, and
(c) deciding dynamically which tactics to use depending on the available resources. The effi-
ciency of these mechanisms makes it possible to react to resource variations at a time granular-
ity of milliseconds.

Future work will focus on achieving an even more effective resource usage by factoring in
knowledge about alternative and future needs of the user, and about resource availability in the
near future and in the vicinity of the user’s current location.

Specifically, we hypothesize that the optimization algorithms can be extended to run over an
interval of time, factoring in forecasts of resource availability and of user QoS goals. Further-
more, rather than offering marginally satisfactory, even if “optimal,” QoS for a task in the pres-
ence of limited resources, Aura could recognize that another task that the user might also be
willing to work on is a better match for the available resources. Finally, Aura could recognize
that the particular task the user is engaged on would be much better supported at the room down
the hall.

8. REFERENCES
1. Amiri, K., Petrou, D., Ganger, G., Gibson, G. Dynamic function placement for data-intensive

cluster computing. Procs USENIX 2000 Annual Technical Conf, San Diego, CA, 2000.

2. Balan, R.K., Satyanarayanan, M., Park, S., Okoshi, T. Tactics-Based Remote Execution for
Mobile Computing. Procs 1st USENIX International Conference on Mobile Systems, Appli-
cations, and Services (MobiSys), San Francisco, CA, 2003.

3. Balan R.K., Gergle, D, Satyanarayanan, M, Herbsleb, J., Simplifying Cyber Foraging for
Mobile Devices, Carnegie Mellon University Technical Report CMU-CS-05-157R, 2005.
Also submitted for publication.

4. Basney, J. and Livny, M. Improving Goodput by Coscheduling CPU and Network Capacity.
Intl. Journal of High Performance Computing Applications, 13(3), Fall 1999.

 16

5. Butler, S. Security Attribute Evaluation Method. A Cost-Benefit Approach. Proc Int'l Conf
in Software Engineering (ICSE), Orlando, FL, 2002.

6. Capra, L., Emmerich, W., Mascolo, C. CARISMA: Context-Aware Reflective mIddleware
System for Mobile Applications. IEEE Transactions on Software Engineering, 29(10), pp
929-945, 2003.

7. Cohen, D. On Holy Wars and a Plea for Peace. Computer 14:10, pp 48-54, October 1981.

8. De Lara, E., Wallach, D., Zwaenepoel, W. Puppeteer: Component-based Adaptation for Mo-
bile Computing. Proc. 3rd USENIX Symposium on Internet Technologies and Systems
(USITS), 2001.

9. Flinn, J., Satyanarayanan, M. Energy-aware Adaptation for Mobile Applications. Procs 17th
ACM Symposium on Operating Systems Principles (SOSP), pp 48-63, Kiawah Island, SC,
1999.

10. Forman, G., Zahorjan, J. Survey: the Challenges of Mobile Computing, IEEE Computer,
27(4), pp 38-47, 1994.

11. Fox, A., Gribble, S., Brewer, E., Amir, E. Adapting to Network and Client Variability via
On-Demand Dynamic Distillation. Procs 7th Intl Conf on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), ACM Press, pp 160-170, Cam-
bridge MA, 1996.

12. Frederking, R., Brown, R. The Pangloss-Lite Machine Translation System. Expanding MT
Horizons: Procs 2nd Conf Association for Machine Translation in the Americas, pp 268-272,
Montreal, Canada, 1996.

13. Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste P. Project Aura: Toward Distraction-
Free Pervasive Computing. IEEE Pervasive Computing, April-June 2002.

14. Hunt, G. C. and Scott, M. L. The Coign automatic distributed partitioning system. Proc. 3rd
Symposium on Operating System Design and Implementation (OSDI), New Orleans, LA,
Feb. 1999.

15. Katz, R. Adaptation and Mobility in Wireless Information Systems. IEEE Personal Comms,
1(1), pp 6-17, 1994.

16. Lee, C. et al. A Scalable Solution to the Multi-Resource QoS Problem. Proc IEEE Real-Time
Systems Symp (RTSS), 1999.

17. Moore, M.; Kazman, R.; Klein, M.; & Asundi, J. Quantifying the Value of Architecture De-
sign Decisions: Lessons from the Field, Procs 25th Int’ l Conf on Software Engineering
(ICSE), Portland, OR, 2003.

18. Myers, B., Smith, D., Horn, B. Report on the ‘End-User Programming’ Working Group.
Languages for Developing User Interfaces. Jones and Barlet (Eds.), Boston, MA, 1992.

19. Narayanan, D., Flinn, J., Satyanarayanan, M. Using History to Improve Mobile Application
Adaptation. Procs 3rd IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA), Monteray, CA, 2000.

20. Nerode, A., Parikh, S., Srivastava, S., Varadarajan, S., Wijesekera. QoS based Evaluation of
the Berkeley Continuous Media Toolkit, University of California at Berkeley Technical Re-
port A461563, March 1, 1999.

21. Neugebauer, R., McAuley, D. Congestion Prices as Feedback Signals: An Approach to QoS
Management. Procs ACM SIGOPS European Workshop, Kolding, Denmark, 2000.

 17

22. Noble, B., Satyanarayanan, M., Narayanan, D., Tilton, E.J., Flinn, J., Walker, K.R. Agile
Application-Aware Adaptation for Mobility. Procs 16th ACM Symposium on Operating Sys-
tems Principles (SOSP), Saint-Malo, France,1997.

23. Poladian, V., Sousa, J.P., Garlan, D., Shaw, M. Dynamic Configuration of Resource-Aware
Services. Procs 26th Intl Conf on Software Engineering - ICSE 2004, IEEE Computer Soci-
ety, pp. 604-613, Edinburgh, UK, May 2004.

24. Rudenko, A., Reiher, P., Popek, G.J., Kuenning, G.H. Saving Portable Computer Battery
Power Through Remote Process Execution, Mobile Computing and Communications Review
(MC2R), 2(1), pp 19-26, 1998.

25. Sousa, J.P. Scaling Task Management in Space and Time: Reducing User Overhead in Ubiq-
uitous-Computing Environments. PhD thesis available as Carnegie Mellon Univ. Technical
Report CMU-CS-05-123, 2005.

26. Sousa, J.P., Garlan, D. A New Approach to Supporting Mobile Users: Task-Model Mobility,
submitted for publication.

27. Steinberg, E., editor. Plain language: Principles and Practice Wayne State University Press,
1991.

28. TechSmith Corporation. Camtasia Studio. www.techsmith.com, June 2004.

29. Yuan, W., Nahrstedt, K., Adve, S,. Jones, D. and Kravets, R. GRACE: Cross-Layer Adapta-
tion for Multimedia Quality and Battery Energy. To appear in IEEE Transactions on Mobile
Computing.

